Introducao a Pesquisa em Informatica

Escrevendo a “

de um projeto de pesquisa

Lesandro Ponciano

2024

J)

Revisao Bibliografica

Ou, “Revisao da Literatura”

Arcabougo Conceitual Limitacoes/Lacunas
na literatura

Arcabouco Perguntas ainda nao
Teodrico respondidas

Revisao Bibliografica

Arcabougo Conceitual Limitagdes/Lacunas
na literatura

Arcabouco Perguntas ainda nao
Teodrico respondidas

Fundamentacao Teorica

12 Dica de Ouro

Mantenha o foco!

e Tudo que € apresentado deve ser relevante a
hipotese ou a questao de pesquisa

e Nao apresente algo simplesmente por que vocé
acha interessante

e Evite distrair ou confundir o leitor

Trabalhos Relacionados

Trabalhos no “estado da arte”

Para cada trabalho relacionado discuta

a responder?
para responder?
ele apresenta?
desse trabalho com a pesquisa
gue voceé esta propondo?

6

22 Dica de Ouro

Ao estabelecer a relacao de um trabalho com a sua
proposta, pense em o que o trabalho relacionado...

e faz e que sera reusado

e mostra e que sera comparado

e nao analisa/mostra e que sera
analisado/mostrado/complementado

... ha pesquisa que voce esta propondo

32 Dica de OQuro

Organize e apresente os trabalhos relacionados de
forma coerente

E DEJ O .ll.
Exempl - O
e p 0S DEIEFII% 0 | ...
e Evolucao historica - O "
e Abordagem metodolégica @ .'-.'-
Ol

e Perspectiva teorica Em O

Vamos analisar um

exemplo? ¢

2012 Second International Conlerence on Cloud and Green Computing

Energy Efficient Computing through Productivity-Aware Frequency Scaling

l.esandro Ponciano, Andrey Brito, Livia Sampaio. Francisco Brasileiro
Departamenio de Sistemas ¢ Compuiagao
Universidade Federal de Campina Grande
Campina Grande, Brazil
Emails: {lesandrop, andrey, livia, fubica}@sd.ufcg.edu.br

Abstract—This paper proposes a new policy for dynamic Ire-
quency scaling: productivity-aware frequency scaling (PAFS).
PAFS aims at optimizing energy consumptions while still
satisfying performance requirements of a given application. In
contrast to the commonly-used ondemand frequency scaling,
PAFS may keep the processor in a power save state even in
high CPU-usage situations. This will be the case as long as
the application (or set ol applications) lor which productivity
is to be preserved presents acceptable performance (e.g., as
stablished by a QoS contract). Our experiments show savings
of up to 23.65% in energy consumption when compared to the
commonly used ondemand DFS policy with no performance
degradation for the productivity metric. PAFS is, therefore,
binded to a single or a set of applications running in a machine.
Nevertheless, compared to previous approaches to application-
specific frequency scaling, PAFS does not require modifying
the application or a calibration process. PAFS requires only
a productivity metric which may already be exported by an
application (e.g.. through a log file, such as response time
or throughput in an Apache webserver) or which may be
compuled through a simple program or scriptl.

Keywords-power-efficient computing, green IT, quality of
service, frequency scaling

decide in which frequency the processor should operate at
each time. Usually, requency scaling is performed by poli-
cies at compiler/application-level [4]-[6]. operating syslem-
level [7]-[10], or task-level [11]-]16].

Application-level policies define DFS at application de-
sign time. This approach allows optimizing both processor
power consumption and application performance, but it
requires the offline profilling and tuning of the application.
System-level policies. in turn, do not consider application
characteristics, and they change the processor frequency in
response to variations on the system load. However, not
knowing applications characteristics, system-level DFS will
never achieve savings comparable to the ones achieveable
with application-level tunning.

Finally. task-level policies are between these two ap-
proaches. This type of policy carries outs DFS taking
into account some performance indicator (e.g., service-level
agreements — SLA, and application service level objectives
— SLO). The present work focuses on lask level DFS. In
contrast to cxisting task-level approaches, ours generalizes

Ponciano, L., Brito, A., Sampaio, L., & Brasileiro, F. (2012). Energy Efficient Computing through
Productivity-Aware Frequency Scaling. In 2012 Second International Conference on Cloud and Green
Computing (pp. 191-198). IEEE. DOI https://doi.org/10.1109/CGC.2012.59

10

https://doi.org/10.1109/CGC.2012.59

II. BACKGROUND AND RELATED WORK

In this scetion, we provide some background information
on how DES is supported by modern hardware and discuss
related work on frequency scaling techniques.

Como a secao de

“Fundamentacao

Teorica”(Background) ficou
curta, ela esta concatenada
com a secao de Trabalhos
Relacionados (Related Work)

ergy savings and satisfying performance req

without offline profiling and tuning. or assuming prior
knowledge about application workloads:

Our system enables binding savings and performance
guarantees (e.g., quality of service — QoS — guarantees)
to keep the system in the most energy-efficient mode

Application/compiler-level policies perform DFS a
appbcanmh-lcvcl or with some compik
on a specific infrastructure, performance mcmu. andlou'
energy saving goals. For example, the Intel Energy Checker
SDK [4] is an API to help constructing green software by

exporting application progress metrics and importing energy

while meeting required performance levels (indep
dently of the actual CPU load levels), but stll is able
to quickly react as situations change.
We show that by achieving energy savings and pro-
ductivity requir PAFS compl the range
of options for frequency scaling policies: ondemand,
performance, and powersave.

In the remainder of this paper. before detailing the exper-
i] setup and | ing our results (Section IV), we re-
view the relevant background and related work (Section II),
and present our PAFS policy (Section III).

II. BACKGROUND AND RELATED WORK

In this section, we provide some background information
on how DFS is supported by modern hardware and discuss
related work on frequency scaling techni

ckground

Modem processors can run at a range of clock frequen-
cies, for example, using Intel’s SpeedStep [18] and AMD's
Cool 'n" Quiet [19] technologies. Dynamic fmqucncy scal-
ing is a mechamsm that allows scali y

s P

by jons. This mechani bl Iht re-

(from hardware meters). Thus,
the cnugy-cfﬁcncnt:y policies can be lmplcmcmtd in the
application using ¢ ion ported from
the meters. The ad Tofth'm pproach is that frequency

scaling decisions are aware of application current and future
behavior, such as loops, recursive calls, message exchanges,
and deadlines, allowing a more accurate DFS. On the other
hand. the developer must be aware of energy consumption
at the application design [4}-{6]. or use a specific compiler
1o help on this task [21]. In other words, in design time
both performance and energy need to be considered. In our
app h. energy considerations are d in run time.

The task-level category. in tum, comprehends policies
that are not coupled to the application code, but are aware
of running applications. Works in this category perform
DFS taking into account some performance indicator (e.g..
application deadlines [13], [14]. service-level agreements —
SLA [12]. [I5]), and application service level objectives —
SLO [16]) or prior knowledge about the characteristics of
the infrastructure workload (e.g.. resource utilization [11]).
In general. the two main differences between our DFS
approach and related works are that (i) we generalize the
concept of performance in a productivity metric; and (i) we

duction on power consumption by lowering the p S
frequency (with a potential negative impact on system’s
performance). The power ion in a p is a

nonlinear function of the operating frequency and voltage.
Nevertheless. voltage and frequency are related: it is not
possible to put the processor in a high frequency state
mthoul also i mcrmslng n.s supply voltage. Thcmfom when

y is ch ge is ically changed to
match requirements.

Adjusting the frequency (and power management in gen-
eral) can be made through a platform-independent inter-
face named Advanced Configuration and Power Interface
(ACPI) [20]). Regarding frequency scaling. ACPI defi
power-performance states (P-states). These states vary be-
tween Fj,, the highest-performance state, and P, the lowest-
performance state.

B. Related Work

Processor frequency scaling has been studied from differ-
ent perspectives and with dnﬂ‘mml goals According to the
level at which freq Y g is and whether per-
formance metrics are considered or noL the studies may be
broadly divided into three categories: application/compiler-

level [4]-{6]. task-level [11}-{16]. and system-level {7} 10].

192

do not require any prior information on system’s behavior.
Furthermore, our approach allows using the same policy with
different productivity metrics, which are defined according
1o the user requirements.

System-level strategies perform DFS at the operating
system without considering any application characteristics.
A number of system-level policies can be found in the
literature [7}-[10]. Particularly, some of them are broadly
used in today's production systems based on both Linux
and Windows [7], [8], namely: Performance, Powersave. and
Ond i. The Perfi policy focuses on maximizing
the application performance by setting the CPU to run at the
highest supported frequency. At the opposite side, the Povm
ersave policy focuses on minimizing the power ¢ P
by setting the CPU to run at the Iowcsx supported frequency.

Lastly, the Ondemand policy adapts the CPU frequency
1o the current system load. According to this policy. the
system load is checked periodically, and. when the load rises
above a predefined threshold, the CPU is set to run at the
next higher frequency. Otherwise, if the load falls below
another threshold, the CPU is set to run at the next lower
frequency. In this work we compare our PAFS policy with
these policies.

11

A. Background

Modern processors can run at a range of clock frequen-
cies, for example, using Intel’s SpeedStep [18] and AMD's
Cool 'n” Quiet [19] technologies. Dynamic frequency scal-

ing is_a mechanism that allows scaling processor frequency
T rostog . . . Bl %
by software instructions. This mechanism enables the re-
duction on power consumption by lowering the processor
frequency (with a potential negative impact on system’s
performance). The power consumption in a processor is a

nonlinear function of the operating frequency and voltage.
Nevertheless, voltage and frequency are related: it is not
possible to put the processor in a high frequency state
without also increasing its supply voltage. Therefore, when
frequency is changed, voltage is automatically changed to
match requirements.

Adjusting the frequency (and power management in gen-
eral) can be made through a platform-independent inter-
face named Advanced Configuration and Power Interface
(ACPI) [20]. Regarding frequency sc: S
erformance states (P-states).

tween Py, the highest-performance state, w

pertormdnce state.

Apresenta os principais
conceitos que sao
relevantes para que se
possa compreender o
gue e feito/proposto no
trabalho

12

B. Related Work

Processor frequency scaling has been studied from differ-
ent perspectives and with different goals. According to the
level at which frequency scaling is applied and whether per-
formance metrics are considered or not, the studies may be
broadly divided into three categories: gpplicaton/compiler-
level [4]-[6], task-level [11]-[16], and system-level [7]-[10].

Agrupa os trabalhos
relacionados em 3
categorias e nomeia
as categorias

13

Application/compiler-level policies perform DIS at
fipplication-level or with some compiler support. locusing
on a specific infrastructure, performance metrics, and/or
SDK [4] is an API to help constructing green software by
exporting application progress metrics and importing energy
consumption measurements (from hardware meters). Thus,
he energy-efficiency policies can be implemented in the
pplication using consumption measurements imported from
he meters. The advantage of this approach is that frequency
scaling decisions are aware of application current and future
ehavior, such as loops. recursive calls, message exchanges.
ind deadlines, allowing a more accurate DFS. On the other
and. the developer must be aware ol energy consumption
it the application design [4]-[6]. or use a specific compiler
on this task [21]. In other words. in design time

running app orks in this category perform
FS taking into account some performance indicator (e.g..
pplication deadlines [13]. [14]. service-level agreements —
LA [12], [15]. and application service level objectives —
LO [16]) or prior knowledge about the characteristics of
e infrastructure workload (e.o.. resource utilization [11]).
general, the two main differences between our DES
roach and related works are that (i) we generalize the
oncept of performance in a productivity metric: and (i) we
0 not require any prior information on system’s behavior.
urthermore, our approach allows using the same policy with
ifferent productivity metrics, which are delined according
o the user requirements.

Em cada paragrafo

apresenta a categoria de
trabalhos relacionados
detalha os trabalhos na
categoria

estabelece a relacao com
a pesquisa proposta

A imagem mostra apenas os 2 primeiros paragrafos
da secao de Related Work

14

4° Dica de Ouro

Sempre que ler um artigo cientifico, analise o estilo
de escrita dele!

|Isso ajudara voceé a

e julgar melhor se o artigo esta bem escrito ou nao
e aprender com o estilo empregado nos artigos bem
escritos

15

Introducao a Pesquisa em Informatica

Prof. Dr. Lesandro Ponciano
https://orcid.org/0000-0002-5724-0094

16

https://orcid.org/0000-0002-5724-0094

